

mate group. The one-proton doublets at δ 6.11 and 5.90 were attributed to H-10 and H-9 ($J_{9,10} = 10.7$ Hz). A one-proton double doublet at δ 2.75 was assigned to H-14 β [4]. Irradiation of the H-14 β resulted in the collapse of the triplet at δ 5.76 of H-13 into a broad singlet. Two broad singlets at δ 5.30 and 4.91 for the H-16 and H-16' protons collapsed into two singlets when the long range couplings (H-5 with H-16 and H-5 with H-16') were removed by irradiating at δ 5.54 of H-5. A one-proton doublet at δ 3.10 was assigned to H-3 [3, 4]. Four three-proton singlets at δ 2.23, 1.60, 1.06 and 0.76 were attributed to the methyls at C-12, C-15, C-15' and C-8, respectively.

Moreover, DEPT and ^{13}C NMR spectra also confirmed the structure for **1**, showing signals of seven primary carbons ($-Me$), five secondary carbons ($>\text{CH}_2$), 13 tertiary carbons ($\geq\text{CH}$) and 10 quaternary carbons ($\geq\text{C}\leq$).

In order to confirm the stereochemistry of **1**, a NOESY Experiment was conducted. The NOESY spectrum (Fig. 1) showed 14 cross peaks and is listed in Table 1. The cross peak **5** belonged to the NOE signal of Me-15' with H-13, and this indicated the β -position of H-13. The presence of a cinnamate group at the α -position of C-5 was shown by the cross peaks **9** and **11**. Furthermore, cross peaks **6** and **8** confirmed that C-9 and C-10 both had an acetate group at the α - and β -position, respectively. The absolute configuration of **1** was not established. However, on the basis of the results presented above, structure **1** is assigned and the compound is 9 α ,10 β ,13 α -triacetoxy-5 α -cinnamoyoxytaxa-4(20),11-diene which has not been reported previously.

EXPERIMENTAL

General. Optical rotation was measured in CHCl_3 . ^1H NMR, ^{13}C NMR, DEPT and 2D-NOESY spectra were recorded at 400 MHz in CDCl_3 with TMS as int. standard. DEPT expts. were carried out with the polarization pulse $\theta = 90^\circ$ and 135° . Plant material was collected from the mountain of Yi-Lan Shien, Taiwan.

Extraction and fractionation Powdered dried heartwood (11.6 kg) of *Taxus mairei* was extracted with MeOH (300 l) by cold percolation. The solvent was evapd *in vacuo* and the residue extracted with *n*-hexane (10×0.5 l). The *n*-hexane extract was evapd to dryness to yield the *n*-hexane soluble fraction (30 g).

The *n*-hexane soluble fraction (30 g) was adsorbed with silica gel (70–230 mesh, 40 g), then fractionated by CC over silica gel (70–230 mesh, 700 g). Elution was carried out with increasing polarities of *n*-hexane (2.5 l), *n*-hexane– CHCl_3 (94.5 l), CHCl_3 (25.5 l), CHCl_3 –EtOAc (27.5 l) and EtOAc (25 l).

The fraction obtained by elution with CHCl_3 afforded **1**. Recrystallization from EtOH gave a colourless pellet, $[\alpha]_D^{25}$

Table 1 2D-NOESY Experiment on compound **1**

Cross peak	Interacting protons	Distance (Å) measured by model
1	Me-8/-OAc (C-9)	1.5*
2	Me-8/H-9	2.6
3	Me-15'/Me-15	3.0
4	Me-15'/-OAc (C-10)	1.2*
5	Me-15'/H-13	2.5
6	Me-15/H-9	1.5
7	-OAc (C-10)/H-21	1.2*
8	Me-12/H-10	2.5
9	Me-12/H-21	1.2*
10	H-16/H-16'	1.9
11	H-16'/H-5	2.3
12	H-21/Ar-H (2H)	1.7
13	H-21/H-22	2.8
14	Ar-H (2H)/H-22	2.5

The positions of the ester groups are not fixed, so the values marked with * are the nearest distances.

+118.5° (CHCl_3 , c 0.2), mp 165–166°, $\text{IR}^{\text{KBr}} \text{cm}^{-1}$ 2965 (C–H), 1735 (C=O), 1710 (C=O), 1634 (C=C), 1230 (C–O), EIMS (Probe) 20 eV, m/z (rel int.) 592 [M^+] (10), 444 (96.5), 402 (27.5), 384 (21.0), 342 (30.5), 324 (39.0), 284 (27.0), 282 (100), ^1H NMR (400 MHz, CDCl_3) δ 7.76 (1H, *d*, $J_{21,22} = 16$ Hz, H-22), 6.58 (1H, *d*, H-21), 6.11 (1H, *d*, $J_{9,10} = 10.7$ Hz, H-10), 5.9 (1H, *d*, H-9), 5.76 (1H, *dd*, H-13 β), 5.54 (1H, *t*, H-5), 5.30 (1H, *brs*, $J_{5,16} = 1$ Hz, H-16), 4.91 (1H, *brs*, $J_{5,16} = 1$ Hz, H-16'), 3.10 (1H, *d*, $J_{2,3} = 5.2$ Hz, H-3), 2.75 (1H, *ddd*, $J = 15.10.9$ Hz, H-14 β), 2.25 (3H, *s*, Me-12) 1.63 (3H, *s*, Me-15), 1.09 (3H, *s*, Me-15'), 0.78 (3H, *s*, Me-8), ^{13}C NMR (400 MHz, CDCl_3) δ 170.65, 170.00, 169.88, 166.19, 148.61, 145.11, 136.95, 135.35, 134.36, 130.48, 129.03, 127.97, 118.84, 114.29, 77.45, 76.31, 72.57, 70.63, 43.06, 40.23, 39.20, 37.97, 32.29, 31.29, 28.25, 27.75, 27.41, 27.02, 21.02, 20.94, 20.82, 17.82, 17.82, 15.26

Acknowledgements—The authors wish to express their appreciation for support of this work to the National Science Council of the Republic of China for a research grant.

REFERENCES

1. Li, H.-Li (1963) *Woody Flora of Taiwan*, p. 34. Livingston, Narberth, Pennsylvania.
2. Lui, C.-L., Lin, Y.-C., Lin, Y.-M. and Chen, F.-C. (1984). *Formosan Sci.* **38**, 11.
3. Woods, M. C. and Nakanishi, K. (1966). *Tetrahedron* **22**, 243.
4. Woods, M. C., Chiang, H.-C., Nakadaira, Y. and Nakanishi, K. (1968) *J. Am. Chem. Soc.* **90**, 522.